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I n 1982, the physicist Richard Feynman
noted that it is hard for classical compu-
ters to simulate some quantummechan-

ical systems. But, he observed, “Let the
computer itself be built of quantum me-
chanical elements which obey quantum
mechanical laws,”1 then this simulation
would become far easier. With this sugges-
tion, Feynman inaugurated the field of quan-
tum computing and introduced the idea
that quantum computers change the
boundaries of computational complexity.
Simulation of quantum physical systems

is thus the first “killer app” of quantum
computing. Since then, several other fast
quantum algorithms have emerged, nota-
bly Peter Shor's algorithm for integer factor-
ization and discrete logarithms2 and Lov
Grover's algorithm for unstructured search.3

Quantum simulation remains one of the pri-
mary applications of quantum computers,
should one be constructed. It is arguably
the most intriguing and potentially valuable
of all the known quantum algorithms, with
potential impact in chemistry,4 materials
science,4 and elementary particle physics.5

The canonical quantum simulation algo-
rithm uses the same subroutine as Shor's
integer factorization algorithm;the quan-
tum Fourier transform;but instead of using
it to reveal the period of a modular function,
simulation uses it to estimate the energies of
a Hamiltonian. It does this using Kitaev's
algorithm for quantum phase estimation,6

which efficiently reveals the phase (and thus
the eigenvalue) of an eigenvector of a unitary

operation. Abrams and Lloyd7,8 showed that
a broad class of Hamiltonians could be effi-
ciently simulated (and thus probed using
phase estimation) using a Suzuki�Trotter
expansion. They applied their results to the
Hubbard model and suggested that these
techniques would lead to an exponential
speed-upover classical computing resources.
Somma and co-workers9 extended quantum
simulation tomanymore systemsbyshowing
that the Jordan�Wigner transformation10

could be used to map the creation/annihila-
tion operators that often define quantum
mechanical Hamiltonians into N-qubit op-
erators. This paved the way for quantum
simulation of quantum chemistry.

Quantum chemistry addresses the pro-
blem of describing the electronic structure
of molecules and materials, which provides
information about how they dissociate, react,
absorb light, and interactwithothermolecules
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ABSTRACT Quantum simulations promise to be one of the primary applications of quantum

computers, should one be constructed. This article briefly summarizes the history of quantum

simulation in light of the recent result of Wang and co-workers, demonstrating calculation of the

ground and excited states for a HeHþmolecule, and concludes with a discussion of why this and other

recent progress in the field suggest that quantum simulations of quantum chemistry have a bright

future.
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and materials. Typically, quantum
chemical methods describe molec-
ular electronic states as products of
single-electron states generated
from a variety of effective Hamilto-
nians, including Hartree�Fock11

and density functional theory
(DFT).12,13 A huge variety of inter-
esting chemical systems are well
described either by these product
states or by simple perturbations of
them. However, these methods
break down in systems involving
strongly correlated electrons. For
thesemolecules, quantum chemists
fall back on brute force methods,
the most accurate (and arduous) of
which is full configuration interac-
tion (CI).14

Full CI considers the many-body
Hamiltonian formed by all the pos-
sible ways of distributing N elec-
trons into M one-electron states.
Because the number of such config-
urations grows combinatorially with
N andM, full CI computations require
[classical] computational resources
that scale exponentially with the
molecule's size. This kind of scaling
rapidly surpasses the capacity of any
existing computer, so quantum che-
mists have developed a variety of
“truncated” approximations to full CI.
Typically, these involve configura-
tions that canbegeneratedusing just
a few excitations from the ground-
state electronic configuration. Unfor-
tunately, although truncated CI wave
functions can be evaluated with
only polynomial resources, they
are known to lack properties that
are required for quantitative che-
mical predictions, such as size con-
sistency.15 Related perturbational
approaches, such as coupled-cluster
approaches,16 include size consis-
tency but often lack strict variational
bounds on the energy. So, although
both truncatedCI andcoupled-cluster
methodsoftengive excellent energies
in practice, they are incomplete solu-
tions to chemical simulation because
they lack certain properties of the full
CImethod. For the chemical problems
where these methods fail, fully quan-
tum simulation à la Feynman might
be the only viable approach.

In 2005, Aspuru-Guzik and co-
workers17 applied iterative phase
estimationandother techniques from
quantum information theory to the
full CI problem. Although their ap-
proach scales polynomially for the
full CI problem, the exact scaling of
their algorithm was unclear in 2005.
However, their approach suggested
that evenmodest quantum resources
could potentially enable full CI simu-
lations that outperform the largest,
fastest supercomputers.
The first experimental demon-

stration of quantum full CI algo-
rithm came 5 years later, when
a photonic quantum information
processor18 calculated the ground
and electronically excited states for
aminimal basis set description of H2

using a 20-bit iterative phase estima-
tion. Although this proof-of-principle
computation did not provide any
added insight into the nature of the
H2 bond, it demonstrated conclu-
sively that the quantum phase esti-
mation algorithm could produce
accurate bonding and excitation
energies, even in the face of the
noise and decoherence inherent to
imperfect physical qubits.
In this issue of ACS Nano, Wang

and co-workers19 demonstrate a
quantum calculation of the ground
and excited states for a HeHþ mo-
lecule, which is isoelectronic with H2

but has differently charged nuclei.
Wang et al. report the highest preci-
sion achieved to date in the quan-
tum simulation of molecular ener-
gies; they surpass chemical precision
by 10 orders of magnitude. Their
quantum simulation was performed
using 2 qubits from a diamond nitro-
gen vacancy (NV) center and repre-
sents the first implementation of the
full CI algorithmona solid-statequbit.
As with the earlier demonstration,18

this result is most notable for verify-
ing that these algorithms can be
successfully implemented on actual
qubits rather than just in theoretical
idealizations.
The principle of quantum chem-

istry simulation has been proved.
The next urgent question is how it
will scale;how many qubits and

how much time will be required to
apply quantumsimulation algorithms
to larger, more general molecules.
The time required scales with N,
the number of basis functions used
to describe the atomic orbitals that
compose themolecule (adequate ba-
sis sets require 5�20 basis functions
per atom), and/or Z, the maximum
nuclear charge in the molecule. The
initial analysis last year20 suggested
that quantum simulation algorithms
might require O(N9) clock cycles.
Although this is a huge advance, in
principle, over the O(eN) scaling of
exact classical simulation, it remains
prohibitively intractable in practice.
However, more careful analyses of
the Suzuki�Trotter expansion have
produced steady and rapid improve-
ments in this scaling, first to O(N7),21

then to O(N5.5),22 and, most recently,
to O(N3Z2.5).23

The best scaling known today
suggests that, given a handful of
good qubits, quantum simulation
couldproducepractical, useful results.
A closer look, however, suggests a less
optimistic picture in the near future.
MoleculeswithN= 1000 are routinely
analyzed on laptop computers using
DFT, the workhorsemethod of chem-
istry and materials science. The most
optimistic scaling given above sug-
gests that a quantum computer
would need at least 109 operations
to match what DFT can do on a lap-
top. Because qubits have far higher
error rates than classical computers,
such a large computation would
absolutely demand quantum error
correction.24 Error correction imposes
massive overhead in time, number

Wang et al. report the

highest precision

achieved to date in the

quantum simulation of

molecular energies;

they surpass chemical

precision by 10 orders

of magnitude.
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of qubits, and complexity because
small quantum rotations have to be
compiled into H, S, and T gates,25

some of which must be exhaustively
distilled fromnoisy resources.26 These
considerations suggest that practical
quantum simulation of meaningful
molecules is substantially more chal-
lenging than it appears at first;and
perhaps infeasible in the near term.
Perhaps surprisingly, we remain

optimistic. Although the demon-
strations byWang et al.19 and others
are a long way from practical utility,
they demonstrate that the principle
is sound. It is widely believed that
further algorithmic improvements
are possible; after all, just in the past
2 years, we have seen the time
scaling drop fromO(N9) toO(N3Z2.5).
Moderate improvements in scaling
could dramatically change feasibil-
ity, and algorithms that avoid the
Suzuki�Trotter expansion27�30 ap-
pear promising. Finally, we observe
that some of the most promising can-
didates for near-term “quantum su-
premacy” (practical speed-ups over
existing classical computers) are ro-
bust quantum simulation algorithms
that may not require error correction,
either by using device noise to mimic
real-world noise in the simulated sys-
tem or by leveraging shallow quan-
tum circuits that run so quickly that
errors do not accumulate. Analog
quantum simulation4 is one such can-
didate and has been used to mimic
Hubbard31 and spin32 Hamiltonians.
Analog methods are not currently
known for chemical or molecular
systems, but these systems can be
addressed within the variational
eigensolver approach,33 which le-
verages a small quantum computer to
evaluate the energy terms of a param-
etric wave function that is varied by
an associated classical computer-
driven optimization. We believe that
between the near-term promise of
these nontraditional algorithms and
steady progress toward the long-term
goal of digital quantum simulation,
quantum simulation of quantum
chemistry has a bright future.
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